Keith's Links


Computers And Technology

Science

Reading List

Favorite Websites

Home Brian and Alison
 

How the Internet Came to Be - Page 7

The earliest demonstration of the triple network Internet was in July 1977. We had several people involved. In order to link a mobile packet radio in the Bay Area, Jim Mathis was driving a van on the San Francisco Bayshore Freeway with a packet radio system running on an LSI-11. This was connected to a gateway developed by .i.Internet: history of: Strazisar, Virginia; Virginia Strazisar at BBN. Ginny was monitoring the gateway and had artificially adjusted the routing in the system. It went over the Atlantic via a point-to-point satellite link to Norway and down to London, by land line, and then back through the Atlantic Packet Satellite network (SATNET) through a Single Channel Per Carrier (SCPC) system, which had ground stations in Etam, West Virginia, Goonhilly Downs England, and Tanum, Sweden. The German and Italian sites of SATNET hadn't been hooked in yet. Ginny was responsible for gateways from packet radio to ARPANET, and from ARPANET to SATNET. Traffic passed from the mobile unit on the Packet Radio network across the ARPANET over an internal point-to-point satellite link to University College London, and then back through the SATNET into the ARPANET again, and then across the ARPANET to the USC Information Sciences Institute to one of their DEC KA-10 (ISIC) machines. So what we were simulating was someone in a mobile battlefield environment going across a continental network, then across an intercontinental satellite network, and then back into a wireline network to a major computing resource in national headquarters. Since the Defense Department was paying for this, we were looking for demonstrations that would translate to militarily interesting scenarios. So the packets were traveling 94,000 miles round trip, as opposed to what would have been an 800-mile round trip directly on the ARPANET. We didn't lose a bit!

After that exciting demonstration, we worked very hard on finalizing the protocols. In the original design we didn't distinguish between TCP and IP; there was just TCP. In the mid-1970s, experiments were being conducted to encode voice through a packet switch, but in order to do that we had to compress the voice severely from 64 Kbps to 1800 bps. If you really worked hard to deliver every packet, to keep the voice playing out without a break, you had to put lots and lots of buffering in the system to allow sequenced reassembly after retransmissions, and you got a very unresponsive system. So Danny Cohen at ISI, who was doing a lot of work on packet voice, argued that we should find a way to deliver packets without requiring reliability. He argued it wasn't useful to retransmit a voice packet end to end. It was worse to suffer a delay of retransmission.

That line of reasoning led to separation of TCP, which guaranteed reliable delivery, from IP. So the User Datagram Protocol (UDP) was created as the user-accessible way of using IP. And that's how the voice protocols work today, via UDP.

 

<- Previous | Next ->